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LIST OP SYMBOLS * 

a spreading rate fdrameter = fi/x 
c apecific heat at constant pressure 
c local mass fraction of the region 1 gas 
Co local mass fraction of the region 2 gas 
6 total energy transfer rate per unit area 
h local enthalpy 
l, mixing length (see Eq. 3.22) 
K local Mach number 
ra local molecular weight 
n local particle density 
p local pressure 
q local heat transfer rate per unit area 
R local gas constant 
ft universal gas constant 

St Stanton number - e/pi^iC^? - 'no) 
T local temperature 
+■ time 

u local velocity in the ..• direction 
v local velocity in the y direction 
x coordinate parallel to the Initial region 1 flow 
y coordinate normal to x 

7 ratio of specific heats 
6 total thickness of the mixing region (at a given x) 
Ti radial coordinate = y/ö 
r, shear stress proportionality constant (see Eq. 3.23) 
p local density 
T turbulent shearing stress (.ee Eq. 3.22) 

* Additional symbols introduced in the appendix are 
defined in the appendix. 



Subscripts 

0 conditions along the coordinate t] =-. 0 
1 conditions In region 1 
S conditions in region 2 
* conditions along the dividing streamline {^) 
a due to gas from region 1 
ß due to gas from region 2 

s 
Superscripts 

0   stagnation condition 
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Subscripts 

0 conditions along the coordinate r; = 0 

1 conditions in region 1 

2 conditions in region 2 
* conditions along the dividing streamline (q^) 

a due to gas from region 1 

ß due to gas from region 2 

Superscripts 

0   stagnation condition 



1.  INTRODUCTICJ 

An analytlcc-l study of the turbulent mixing of two 

disBimHar gases In a free shea:" layer was performed by 

Aeronautical Research Associates of Princeton, Inc. for 

the Hyperveloclty Kill Mechanisms Program. It was felt 

desirable to develop a simplified method by which closed 

form expressions could be obtained for the characteristics 

of such a flow. These Included the boundaries of the 

mixing region, the location of the dividing streamline, 

the local flow velocities, the local thermodynamic 

conditions, and the mean rate of energy transport across 

the shear layer. 

It will be shown that although the effects of 

compressibility and the presence of dissimilar gases on 

either side of the mixing region raise the level of 

complexity of the problem, the approach remains the same 

as that utilized to solve the single gas incompressible 

problem. Therefore, in order to focus attention on this 

approach, the incompressible one-gas flow is treated 

first (Section 3), then the modifications required to 

account for compressibility are shown and the results, 

which then become functions of Mach number and enthalpy 

are given (Section 4), and finally, the treatment and 

results for the mixing of two dissimilar gases are 

presented (Section 5). 



2.  THE FREE SHEAR LAYER 

Before proceeding with the solution of the incom- 

pressible single gas, the compressible single gas, and 

finally the compressible two-gas problems, a more detailed 

description of the flow pattern under study and the 

corresponding model utilized throughout the analysis 

should be given. Shown below is a sketch of a cross- 

section oi  a free shear layer showing the cnco ag free 

stream, the region of turbulent mixing, and the entrained 

flow. Typical velocity profiles of the free stream and 

mixing layer are also shown„ 

free 
stream 

external 
flow 

^ mixxng region 

leading edge ] 
of hole 

entrained flow 

Sketch of Actual Shear Layer 

Several modifications to the above picture can be 

introduced which, while simplifying the analysis, do not, 

in general, materially effect the solution. For one, the 

boundary layer buildup in the free stream prior to its 

arrival at the leading edge of the hole is assumed to 

have little effect upon the subsequent mixing and thus 

is neglected. For another, the exact self-similar hori- 

isontr.l velocity profile in the mixing region can be 

approximated by a properly chosen straight lins. It is 

recognized that analytical expressions for the actual 

profile do exist (for example, reference 2);  however, a 

 - -v- ■■  ■ ■ . 



linear profile, particularly for the two-gas compressible 

flow problem, allows the development of the solution In 

terms of closoiä form expressions which are most Instructive 

and. for our purposes, appear adequately accurate. The 

method by which the proper eaulvalent profile was obtained 

is discussed in the next section. 

Several asBumptlons common in boundary layer theory 

were also made. Specifically they were that the gradients 

in the vertical direction are much greater than those in 

the horizontal direction^ the static pressure is everywhere 

a constant, and the mean flow is s* ady. 

The use of these assumptions leads to the Idealised 

model for a shear l^yer shown in the next sketch. A 

number of important quantities which will be discussed in 

the development to be presented in the next several sections 

have been Indicated, 

- T}- upper 
boundary 

n 
x 

—J*_- dividing 
streamline 

1c 
boundary 

r|p lower 

Sketch of Model for Shear Layer Studies 



.3. INCOMPRESSIBLE SINGLE-GAS FLOW 

In this initial analysic,, several flow parameters 
of major interest will be derived for the incompressible 
single-gas shear layer. For this case the method will 
be most transparent and experimental data are available 
for comparison. Having established the pattern of the 
development with this simple case, It will not be 
necessary to retrace the steps in detail for each suose- 
quent case. In the ensuing sections, the emphasis will 
be upon the modifications required for treatment of the 
more general flov,s and the •subsequent effects upon the 
various flow parameters of interest. 

3,1. Horizontal velocity. 

If one assumes; as is customary in turbulent shear 
layrr theory, that the mean profiles are self-similar 
and that mixing length is proportional to shear layer 
breadth, it can be shown that the total spread of ehe 
layer varies linearly -.nth downstream distance and that 
the velocity and hence ell other flow parameters remain 
constant along any ray emanatirg from the origin. Thus 
the problem can be e.-pressed in terms of onlj- one inde- 
pendent variable r\    where r| = ?/x , 

Expressing the statements that ehe horizontal 
velocity is linear in y and that the shear layer thick- 
ness is 3inear in x as 

u = u + o (>)y (3.1) 

and 6 = ax (3.2) 

we can write in terms of the single coordinate T] = y/6 
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JL = Ü + 3 (3.3) 
ul  ul  a 

frcm which it can be shown that 

u0 UQ 

Va =1 - ^ and Va = - ^ {zA) 

vjhere T], , i]^  , u, , u-, , and 5 are shown in the final 
sketch of the last section. 

The reference velocity vu in turn can be obtained 
by utilizing the fact that the total horizontal momentum 
flux in the mixing region may be written 

2J 2. 
/ 

pu^dy = Pi^Xi (3.5a) 

y2 

where y, and y? are the limits of the mixing region 
at x , Transposins to the coordinate T\    and nondimen- 
sionalizing, this may be vrdtten 

/%<!) = > 
tg/a 

Introducing the relationships (3.3) and (3.^0 for U/P, 

and the limits rj /a and r\^/a    and performing the 
indicated integration, we find 

5=1 '3.6, 

Finally, returning to the above equations for the horizontal 
velocity and mixing region limits, we can now write 

r^| + ^ (3.7) Ul  0  a 



2i 
a 

1 
3 

6 

(3.8) 

a 
2 
3 (3.9) 

5.2, Vertical velocity. 

The vertical velocity anywhere in the flow can be 

obtained through the use of the continuity equation. For 

incompressible flow, this equation is 

|M=0 (3.10) 

Using (3.7) and replacing TI by y/x ,  we car. write 

(3.11) 

or by the use of (3,10) 

öv 
ay ~ 

+ a 7£ (3.12) 

Integrating this last expression yields 

2 
+ C 

ul ' 2a 

JL 

(3.13a) 

where C = *_ from the boundary condition v = 0 at 
2a 

T, = T), .  Thus 

t - * [®2 ■ C^)2] (3.13b) 



or by subotltuting (3,8) 

-L - a Yllv 1 ' 
5. (3.13c) 

A particular vertical velocity that may he of intereat 

is the one that exists at the lower edge of the mixing 

region, i.e. the velocity at which the gas initially at 

rest Is being entrained. By substituting the expression 

ru/a from (3.9) for -q/a    in uhe above equation, we obtain 

3•3. Dividing streamline. 

Of particular interest in several future computations 

will be conditions on the dividing streamline. The 

d'aiding streamline of the mixing region is defined as that 

strer.iiiine above vhich the mass flow is equal to the mass 

flow from the external stream that has been captured by tae 
mixing region. Thus 

/ 
pudy = p1u1y3 (3.15a) 

where the subscript « will be used to denote conditions 

on the dividing btreamline. In ter.jis of the variable n , 

/l/a(^)^ <3.15b, 



8 
Again utilising (3.7) and (3.8) for u/u1 and r^/a . a 

quadftttic exprenelon for ri^/a is obtained from which one 
deduces that 

n* 
Xä -f V'T' - •o893 (3-l6) 

(Note that ttie plus sign of the square root is to be taken 

since T)#/a must lie Inside n^/a  = - 2/3 ,) 

3.4, Deflection of the free stream. 

In the derivations for the vertical velocity and the 

dividing streamline, it was assumed that the free stream 

velocity contained no vertical component (v1 s 0). If, 

instead, it is assmed that due perhaps to the pres-nce of 

a shock emanating from the upstream edge of the hole there 

is a vertical velocity component to the free stream, then 

the general vertical velocity and dividing streamline 

expressions are modified as follows : 

The constant of integration C in equation (3.13a) 
is now C = (vi/ui) - (n^a) so that 

..2 

*!     n\*J    "9J + ^ (3'i7) 

and 
v2 . a  vi 
Ui " 6 + ^7 ^3.18) 

The mass balance equation (3.15a) must contain a term to 

account for the mass flux being lost through the upper 

boundary of the mixing region. l^us, instead of (3 15a) 



we have 

pudy = p1u1y1 - p-jV-jX (3.19) 

y^ 

Nondimenslo^ilizing and integrating as before yields 

a 5 + 
ill 
a u. 

(3.20) 

An interesting quantity which can now be computed is 

the magnitude of the vertical velocity component of the 

free stream necessary to drive the dividing streamline to 

a horizontal position, i.e. ^ = 0 . It is quickly seen 

from the above expression that 

© T1#=0 a 
18 

(3.21) 

If one assumes that the shear layer is formed as a 

result of a uniform flow across an orifice in an otherwise 

closed thin-walled chamber, then as long as the dividing 

streamline is deflected downward the mass in the charber 

will increase (se^ sketch below). 

free 
stream ^.free shear layer development 

Tli 

chamber 

n» 

'■:■'. 

(.•'■ 

M 
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In this case, to the order of accuracy of the present 

shear layer model; the resulting increased pressure in the 

chamber should deflect the free stream upward until the 

pressure is Just such that a shock is formed which deflects 

the exterior flow by an amount v1 as given by {3.21). 

At this point no further increase in mass and thus pressure 

in the cavity is obtained since TI# = 0 and thus the flow 

is stabilized. For finite thickness walls, the deflection 

of T'      necessary tc arrest the .ill-up and the associated 

v^^ can be siroilarly computed. 

3.5. Mixing region growth. 

Up to this point, the boundaries of the mixing region 

and the dividing streamline have been obtained as a 

percentage of the nondimcnsional spreading rate a = 6/x . 

To determine this quantity and thus the magnitudes of TJ , 

T} , and n , it is necessary to introduce the turbulent 
2       * ' 
stress present in the shear layer. The formulation used 

for this study is one which assumes that the turbulent 

stress is given by the Prandtl mixing length formula, 

namely 

dy oy 
(3.22) 

where i is the mixing length. Assuming that £    is 

constant across the layer at any station and is proportional 

to the breadth of the shear layer £ , we can write by 

making use of our linear velocity profile (•—■ = -jr ) 

o 
T = /cp^ (3.23) 

where K    is referred to as the shear stress proportionality 

constant. For an actual velocity profile (see reference 2), 
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the line of maximum shear is found to coincide with the 

dividing streamline. For this reason the charactoristie 

shear stress Just derived will be assumed to act on the 

dividing streamline. 

To as.^ociate a spreading rate with this shear, we 

first introduce the momentum equation 

f^ + ikH^ll (3.24) 
ox öv        öv öy        öy 

and integrate this expression from the l^wer boundary of 

the mixing region y0 to the dividing streamline y^ . 

There results 

y* 
d   r     ? 2ay2 2dy* — j pu'dy + P2u2 — - p^ — + p2n2v2 - P^V# = T#- t2 

y2 d (3.25) 

Applying the conditions Up = Tp = 0 and noting that 

äy /äx -  v /u ,  this expression reduces to 

Finally> carrying out the indicated integrations and 

differentiations results in 

a   fzn*   2\   tfr>*\2 4"|   ifr**\3   sir1, 
* = llU-+ JJ + 91W ' 9.i + tw + Wi (3.27: 

where ri^a is in general given by (3.20). For the case 

in which there is no free stream deflection (v. = 0) , 



12 

we have, from (3.16), r, /a = - ,.0893 and the spreading 

rate becomes 

a = 15.6/c (3.28) 

It appears that we have merely substituted one unknown 

quantity for another. However, shear stress proportionality 

factors have been experimentally obtained over a wide range 

of flow conditions both at ARAP and elsewhere. For instance, 

in reference 1 a shear stress parameter K analogous to ;c 

was obtained from the measurement of free axlsymraetric 

turbulent Jets. It was found there that K depends, to 

first order, only upon a suitably chosen local Mach number. 

The Mach number used in reference 1 was that found where 

the local Jet velocity had dropped to one-half its value on 

the centerline for the same axial location, this location 

being quite close to the point where the stress is a 

maximum. A plot of K as a function of local Mach number 

thus defined is given in Figure 1.* 

To test the suitability ox utilizing the K from 

reference 1 as a basis for the K parameter developed here, 

use vas made of calculations of the spreading rate of an 

incompressible shear layer found in reference 2 and of 

(3.28) for the incompressible relationship between spreading 

rate and K  .    Reproduced in Figure 2 is the shear layer 

profile given in the above reference. The proper equivalent 

linear profile also shown in Figure 2 was constructed such 

that the momentum lost between y0 and y, , i.e. the 

momentum gained from y« to y0 , in the case of the linear 

profile is equal to the momentum which is lost by the exact 

* The values at K shown in Figure 1 are a factor of 4 less 
than, those in reference 1. This change was necessary to 
compensate for the difference in the baflc definition of T 
used here and in the  referenced report. 

-—■———-■—-■ 
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profile between the same two limits. Thus we have required 

that the rnomentuir. transferred be the same for each profile. 

This condition leads to a value of the spreading rate 

a ~ 6/x of O.I85 for the equivalent linear profile. 

Returning to (3.26) we find that K    for incompressible 

flow is then .0119, Prom Figure 1 it is seen that the 

incompressible value of /c is .0117 which agrees quite 

favorably with the above result. Thus we will assume in 

what follows that the evaluation of K    versus M shown in 

Figure 1 is valid for free shear layer flow in which M is 

the local Mach number on the dividing streamline (the 

location of maximum shear for Incompressible free shear 
layer flows). 

3.6. Summary of the incompressible flow results. 

Before proceeding to more general flow problems and 

the determination of the energy transferred to the cavity 

associated with each of them, it might be useful to 

summarize the Incompressible flow results. Table 3,1 

presents the general form of the several expressions 

previously derived. Table 3,2 provides the specific values 

of Important quantities for the case of v. - 0 and 

K  = ,0117. 



u. 

TABLE 3.1 
Inoo^r^asme^Jhear.Layer Flowjxoresjaions 

2     H 54t 

14 

ul      SLU;    "9 ui 

a 

a 
/c 13 U + 3; + 9 [\x; " 9 J + t\~) + irJ/ 

T/3LE 3.2 

Specific Values of Incompressible Flow Parameters for 

v1 = 0 and K  = .011? 

Vui= '667 

Vg/^ = .0305 

u*/ul .5T7 

V=(/Ui = ^i02 

a = ^ = .I83 which corresponds to an angle of +10.6° 

yl 
\ " IT = •o6:!0 which corresponds to an. angle of + 3.50 

y
# 

\ * T ~ - 01^ which corresponds to an angle of - 0.9° 

y2 
^2 " x~ =~«122 which corresponds! to an angle of - 7.10 

-. ^v:. 
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4.  COMPRESSIBLE SINGLE-GAS FLOW 

When the Mach number In the  free stream is appreciable, 

the density can no longer be considered constant across the 

layer. In the previous section, the integration of mass 

flux and momentum flux assuned p Inv&riar,^. Now these 

integrals Mist be reevaluated in terms of a varying derslty, 

^'1'    Density distribution. 

In what follows we will assume, as was done in 

reference 1 where the validity of the assumption is discussed 

in some detail^ that the mean local enthalpy in the mixing 

region ia related to the mean velocity through the Crocco 

integral. Ihus the local stagnation enthalpy may be written 

as a linear function of the local velocity, 

h0 = Au + ß (4.1) 

Expanding h0 in terras of a local static enthalpy, this 
latter quantity cai^ oe written as 

- Au + B - | uH (4.2a) 

ana after inserting the boundary condition h = h, when 

v  =s u, and h = hp vrhen u - 0 , h can toe expressed as 

h = "£4^)t-(h°-hi)(sr)2 ^ 
Writing now the loial density as 

and recalling the assumption that the -iressure    p    is 

■ - _    ■ 



conatant across the mixing If.ye?,  we obtain 

Pi .hiJ      h2 14 

hi 
hi 

r 
il 

h^-i ^i^ 
(;+.4) 

where 
ent 

0 
re hVtt,  is the stagnation enthalpy ratio acros-j 

1        n   i   "YT - 1  ? '-1 
ire layer and ^A^ = | 1 + -^— M-f j   is a fu 

the 

function 

jf  the free stream Mach number and ratio of specific heats, 

Equation (4.4) provides th3 necessary relationship between 

the density and velocity for use in the above-mentioned 

Integrals. Because of the linear relationship between 

velocity and 1ocatlon (3.3)J these integrals can be 

obtained in closed form. 

4,2. Compressible single-gas flew paraueters. 

Not all of the flow relationships developed in the 

last section are modified by c jpressibillty. The deriva- 

tions of the general expressions for the horizontal and 

vertical velocities 

_u_ 

"l 

u. 
+ n. 

a (3.3) 

v 
u. Vä 

2., 
(3.13b) 

M 

A 

and the expression for the mixing region limits 

11 
"a 

uo i - — 
u 

and 0 
vu (3.4) 

did noi  involve tie density and thus are unaltered. 

3^JL-T^E=»-i--i^r-^:C
I^:-^'---"---'" -t~~      ' 
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However, the reference velocity UQ/U, , tha spreading 

rate a//c , and the dividing streamline r^/u obtained 

as a result of momentum or mass flux Integration mi'^fc be 
reevaluated. 

Heference ve" ocity. The velocity u^/u, was obtained by 

equating the total momentum in the shear layer at any 

point to the captured momentum of the initial flow (see 

section 3.1/. For the compressible shear layer, the 

integral of equation (3.5b) becomes 

Va     2 

'Ig/a 

/" ^. f'ji.^ *fz\ ,u ^ 

where the density ration is given by equation (4.4). 

Integration now results in an explicit but rather involved 

expression for UQ/U, . Written functionally 

The  p^tual expression is given in the appendix. It has 

been evaluated for several enthalpy ratios over a range 

of Mach numbers on ARAF's high speed digital computer. 

The  results can be seen in Figure 3. Using this Infor- 

mation, wa and Tjp/a arc immediately found from (3.4;, 

Dividing streamline. "Rie dividing streamline was obtained 

from mass flow considerations (see section 3c3/. T&e 

integral in (3.15t) when the density is included,, yields 

an equation for ri /a in terms of the compressible 

parameters hp/n1 , M , and 7-, and the vertical 
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18 
component of the free stream v^/^ , Thus 

(Again, the actual expression is available in the appendix.) 
However, before evaluation of TJ  itself (as well as r\y 
and Tjg), the spreading rate a must also be recomputed. 

Spreading rate. The rate at which the mixing region spreads 
a = d/x was obtained for the incompressible case by- 
computing the ratio of a to the shear stress factor K , 
From this ratio and a knowledge of K  , the nondimensional 
spreading rate <5/x can be obtained. For compressible 
flows th*.  integration indicated in (3.26) yields 

' h2  ..       % N 

(See appendix for actual expression.) The proper value of 
K    is obtained by first computins M# as a function of 
hp/hP , M, , and y1  ,  an^ then using the assumed rela- 
tionship between K    and    given in Figure 1.  The local 
value of Mach number M# is shown in Figure 4.  The 
resulting evaluation of a = ö/x is presented in Figure 5. 
It is seen that enthalpy ratio across the shear layer has 
little effect on the total spreading rate. 

With the compressible spreading rate known, we can 
now return to (4.7) and (3.4) and obtain the dividing 
streamline and mixing region limits, respectively. These 
quantities are shown as functions of Mach number M^    and 
enthalpy raolo  ^p^1! ln ^S1-11*6 6« 

- 
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4.3. Energy transfer. 

A characteristic of free shear layer flow that is of 

interest when there exists a difference between the level 

of stagnation enthalpy on each side of the layer is the 

resulting rate at which energy is transferred across the 

layer. To compute its magnitude, we start by writing that 

the total energy transferred across a region of the shear 

layer per unit time per unit area is 

e = q + TU 

where q ,  the local heat transfer rate, is 

q = pi2 |i Ifi 
oy loy 

and from our previous discussion of shear 

T - pi2 |ä !|i 
oy 'oy 

Thus the total energy flux can be written 

(4.9) 

(4.10) 

(3.22) 

e = pi' du   T 

öy Löy ^ u dyj 
^0 1^ + u |HU  Pi2l|j^ (4,11) 

Now, utilizing our previous assumptions of a linear 

variation of stagnation enthalpy with velocity and a 
linear velocity profile 

dh 
a 

0   ^0öu ^ÜLl^VuA 
y ' öu dy  \ \    /V V (4.12) 

■*^'0aB^^^^_^:^:-^^;£^^^_:...-..^:^, .-_r: 
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and since from previously obtained results 

&2 |ä = K6U, 
oy     i 

the equation for total energy transfer becomes 

e = Kp^ (h® ~ h2) (4.13) 

Here we have assumed, as was the case for the shear, that 

the characteristic value of a given transport should be 
computed on the dividing streamline. 

There are several ways In which this quantity can be 

presented. Commonly the Stanton number is utilized. Here, 

from a comparison of the definition of Stanton number, 

e = p:Lu1St (h° - h2) (4.14) 

with (4.13), it can be seen that 

St=~/c (4.15) pl 

The density ratio on the dividing streamline may be 

computed by first calculating UQ/O. and TJ /a from (4.6) 

and (4.7), then u*/u., from (3.3), and finally p^/pj^ 

from (4,4). The shea: stress proportionality constant K 

is given in the previous section. The Stanton number thus 

computed for the range of ^ch numbers and enthalpy ratios 
previously shown is given in Figure 7. 

A second and perhaps here a more useful nondiraensional 

parameter for the calculation of energy transfer may be 
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obtained aa follows. Expressing the density p1 us 
(aee (4,3)) 

7T  P. 
1  7! - 1 h1 

(4.16) 

the relation tov  energy transfer rate (4,14) can be 
expressed as 

7-|        r   hy-j/hPx 

^ ^-TT ^i VM.1 - ^y      (4'l7) 

Dividing (4.17) by  [ 71/(71 - Djp^ , one obtain? 

73 
TfTT plul 

P# 

/ 
St (l 

h2>l 
h^ ^1. 

cr since St = -- K    there results finally 

(4.18a) 

TT^T Pl'^l 
K(l-h$$     (4'18b) 

A plot of e/[71/(71 - l)]p1u:L is given in Figure 8. 
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COMPRESSIBLE TWO-GAS PLOW 

In thj.s section we will extend the analysis to Include 

the mixing of two dissimilar gases. 

5.1. Densl-cy distribution. 

In what follows, we again utilize the development in 

reference 1. There it was shown that for the mixing of 

two Mpecies (in which nc chemical reaction takes place) 

the local mass fraction of each species varies linearly 

across the mixint, region. Letting c„ and a cfl represent 

the mass fraction of 'he two species defined as 

ca -  Pc/P and cß = Pß/P (5.1) 

then from reference 1 

a  u- 
i 

(5.2) 

cß ^ ■L " u 
u 

(5.3) 

v;here a represents the species in the free stream. 

rfith these relationships,, we are In a position to 

reevaluatc- the local density expression. Assuming that ^he 

gases are still perfect 

P   pCDm 
p = ^ "-  «h" 

(5.4) 

where ft is the universal gas constant and m the local 

mclecular weight. Thus, for use in our mass flux and 



«3 
momentum flux lntegral3, 

£.^ \v.$x}L!LlL (5.5) 
v 

tjyom which we see that in addition to enthalpy ratio which 

is already available, we need expressions for the specific 
' heat and molecular weight ratios. 

The local enthalpy can be expreeaed as 

] V= h = c^a + ^ß = c^Pl
T + cßcP2

T    (5-6) 

if ideal gases are assumed as before. Eliminating the 
"temperature 

cp ^ c«c^ + cQc 

or using (5.2) and (3.3) 

P ^ CaC
Pl   

+ %%2 (5.7) 

= © \+ C1 - 4) %    (5-8) C

P = 

- '2 

ana so 

B^e molecular weight can be expressed a as 

. = £ 

where n is the particle density. Noting that 

ca. 
"a1^     ,      P a   an Po   nQnL 

(5.10) 

^  cß s f - -^ - . (.5.11) 



so that 

n = na + nft = (-S + -E) 
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(5.12) 

we can write by combining (5.10) and (5.12) 

m = 
"l  m2 

_1 
■it 

Again, using (5,2) and (5.3) 

or 

fu/u,  (1 - u/u,) 
in =  =• + —i_ 

ml  L
U
I V   V + m2 J 

-1 

-1 

(5.13) 

(5,14) 

(5.15) 

Returning to (5.5) and substituting for the specific 
heat, molecular weight, and enthalpy, expressions (5.9), 

(5.15), and (4.2b), we obtain the desired expression for 
the density. 

Pi 

^v1 cPn; 
+ cPij^ 

M   m2;  g^^i-^^-^i-^-jj 
x       j, 1 

(5.16) 

E~^S£^iS^S=FSi£55i~;-^r KBafe -_. . 
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5.2. Coapresslble two-gas flow p&raiueters. 

Xn secticn 4,- it was demonstrated that once the 

proper density expression had been formulated in terms of 

the local velocity, the expression for ail of the flow 

parameters of interest could be obtained in closed form. 

Having reevaluaced the local density expression to account 

for the mixing of dissimilar gases, we may proceed in a 

manner identical to that outlined in section 4, The 

required integrations are considerably more involved but 

still tractable. The final expressions, now functions of 
cPo/cp- ^^ m-j/n^ as well as t^/hj , V^  , y1  ,  and 
v^/u^ are given In the appendix. These «Iso have been 

programmed for ARAt-s digital computer. For maximum 

molecular weight effects,, solutions were obtained for a 

ratio of entrained gas v/elght to free stream gas weight 

of both one-tenth and ten. In each case the entrained 

gas molecules were assumed to possess a large number of 

degrees of freedom so that a 7« of 1.2 was used 

throughout. To isolate the effects of the mixing of 

dissimilar gases, all computations assumed a stagnation 

enthalpy ratio of 0.5. 

The  same flow parameters as were presented for thf5 

single-gas compressible solut. ns are shown for two-gas 

flow in Figures 9 through 14. Note the very small 

variation of a = 5/x with molecular weight. The final 

plot. Figure 14, indicates that for the same external 

conditions, at high Mach nun evs, the  presence of a heavy 

entrained gas can be expected to decrease the energy 

transferred by approximately 65 percent relative to the 

case in which the entrained gas is a factor of 100 lighter, 
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6. CONCLUSIONS 

By the use of several sirapllfylng assumptions, closed 
form expressions have been obtained for the properties of 
a turbulent free shear layer in a comprecslble nonlsoener- 
getic flow in which dissimilar gases are present on the 
two s'äes of the mixing region. Similar expreösions are 
obtained for both a compressible anu an incompressible 
single-gas shear layer. 

Among the properties in the shear layer for which 
expressions have been developed are 

a. the local velocities 
b. the local thermodynamic quantities 
c. the boundaries of the ?hear layer 
d. the dividing streamline 
e. the rate at which energy is transferred across 

the layer. 
The specific equations are available in the appendix. 

Plots of these quantities as a function of Mach number, 
enthalpy ratio, and molecular weight are given in the 
body of this report. 
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APPQ^IX 

The relationships for the several properties of the 

ßäugle gas compreasible sh^ar layer are as follows* 

Reference velocity. 

u, 
i 

ul     f      yZ ^ 2^ V.    **/■    VR + 2(t) - K/ 

Dividing streamline. 

h. 

«V^ ' ^ ' Ml ' 71 

5 - ^^) k \ / p» 

'^ B - ^(-^, ■ k 
"APT. 

k 
R fR " ^ ^ k^ e.,-D f ^i  ^0 ,. ^l\\ 

Spreading rate. 

a 
^-"T-^1 hvrö' Mi' 7i' T) 

e^-^ffK1 y^üfegfaa^^ ES 
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a m(^)^$L^i )+i 
^i^^+l/'f-^j 

P*N 

where 

%     u 
a ^(S^K^ax-*]-1 

1* 
Pi 'fA + <r)-^)8r a /    J 

A = 0  + R ^0 . 1 ^l0 

B = "-*© 
C =  - 

2 

k -.. 3l 2^0  +R^ 
J 

1/2 

R=^|-0 

0«i2=
h2/'1       ^\ 

^=   (7!  - 1)^2 
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For the dissimilar gas cornprepslble problem,  these 
expressions are aa follows: 

Reference v^ioc'    ', 

U0      J\ m2      CP2 > 
UH ^^i^i'^'c^; 

P - M)  M2 

(0  - R^ IO^ 
2(R-t- i^M) 

i 

?       J KVl - -VL 2(0 . RM -|M^) 

r.2 

+ (R+ jMj (P - 3M)   + (fl + ^M)
£
 tiLÜS : RM 

i' -2 
Hi 

2 
*  /2 

] 

m R  -i- 20 -h k 
R  + 20 ~ k 

.(Lz-£)    (? -.")^      lnM 

wmiV~:aBsss3sstii ».a-assgr-a *. 
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/n*    h 
e\ir > ZU > M y     ^    C

P? \ 
"l 1     CP1 / 

(-^ 
Tl»      u. 

+ |[ P - 2M + i-llJ + .    (R ^M)M(P - M) 

2[<*( 1+M) - Öi(l+M)- Ml- 

Kl 
8 K- 

A 
i 



Sheading rate. 
A-5 

a      b/x 
hlt™ , Mn "Y, 

ia,- 

m-, 
P2^ 

a» f'flUi-MU! a 

1^ Pw'Vl 
—»w 

•^ M"^ 

u 

■p-Mr..11^"l (T^RöTp^. In 
+ M  + —1 

a 

M -) 

«2 
lnl 

»    «/^ 

—0—; 

o / 'H*    « 
■»v-+ V) 

^ M(3M -> 2P)   -  (R •H^M)(P - M)M2 + iR_ÜW)XLz-Ä 
2(0 - RM - IM5) ,. 

(R +^M}2 + fU  . RM . |M2). 

^/2 
k \^2C T + B -l^"> 

,R-^ ;^;~ ^2C   '^ + B fk 



where 

M = —^— M = -i 
1 - M m^ 

1 - P Cpi 

and R,A,B,C,k:,0, and f   as above. 
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